
CS-233 Theoretical Exercise

1. Logistic regression can be used to

a) predict tomorrow’s temperature from previous daily temperature observation.

b) predict whether the object is glass or stone given its reflectance.

c) predict someone’s weight based on their height.

d) predict the probability of raining given the humidity, wind force and temperature.

e) tell apart a dog from a cat given height and weight measurements.

Solution: b), d) and e).

2. Which of the following statements are true:

a) Linear regression cannot be used for classification problems.

b) Logistic regression is a linear classifier and can only separate classes using linear decision boundaries.

c) The output of logistic regression is the estimated probability of the sample belonging to a specific class.

Solution: b) and c).

3. In the following figure, the dots and triangles are samples from two different classes. Which line is the
most likely decision boundary obtained by logistic regression?

Solution: (b)

4. Consider a dataset with the four data points shown in Table 1. Assume x(1) and x(2) are two measured
biochemical indicators of patients, and y = 0 and y = 1 indicate the patients without and with a specific
symptom, respectively. We want to build a logistic regression model to predict whether a patient has the
symptom based on the input features x(1) and x(2). The prediction model is expressed as

ŷ = σ(wTx), (1)
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Data Point x(1) x(2) y
1 -10 -20 0
2 0 -10 0
3 10 0 1
4 20 10 1

Table 1: Data points.

Algorithm 1: Gradient Descent
Given the step size η;
Initialize w0;
while not converged do

∆w =
∑4

i=1(ŷi − yi)xi;
wk = wk−1 − η∆w;

end

where σ is the sigmoid function, w = [w(0), w(1), w(2)]T , x = [1, x(1), x(2)]T .
(1) Write down the algorithm (pseudo-code) that uses gradient descent to compute the optimal w.
Solution:

(2) Perform one iteration of the previous algorithm with an initialization of w = [1, 1, 1]T and a step size
of 0.1.

Solution:

(2)

w0 =

11
1

 , (3)

ŷ1 = σ(wT
0 x1) = σ(−29) ≈ 0, (4)

ŷ2 = σ(wT
0 x2) = σ(−9) ≈ 0.00012, (5)

ŷ3 = σ(wT
0 x3) = σ(11) ≈ 0.99998, (6)

ŷ4 = σ(wT
0 x4) = σ(31) ≈ 1, (7)

∆w = 0.00012

 1
0

−10

− 0.00002

 1
10
0

 (8)

=

 0.0001
−0.0002
−0.0012

 (9)

w1 = w0 − 0.1∆w (10)

=

0.999991.00002
1.00012

 (11)

(3) Assume w∗ is the optimal solution obtained after the full gradient descent algorithm (not just a
single step) in Question (2). Now, we divide x(1) and x(2) by 100 and perform the gradient descent algorithm
again with the scaled data. This results in a model with different parameters w′. Given the test data of
new patients {x5, ...,xN}, will the two classifiers defined by w∗ and w′ produce different results for them?
Justify your answer mathematically. Note that you need to also scale the test data when using the classifier
defined by w′.
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Solution: No. Let w∗ = [w(0)∗, w(1)∗, w(2)∗]T be the optimal solution for the original data from Question
(2), i.e., x = [1, x(1), x(2)]T without scaling, obtained after the full gradient descent algorithm. That is, we
have

w∗ = argmin
w

R(w,X) , (12)

= argmin
w

−
4∑

i=1

yiln(σ(wTxi)) + (1− yi)ln(1− σ(wTxi)) . (13)

Let us then define the minimum loss R∗ = R(w∗,X), obtained by evaluating the training objective with the
optimal parameters.

Furthermore, let x′ = [1, x(1)/100, x(2)/100]T be the data scaled by a factor 100. Then, we can define a
parameter vector w′ = [w(0)∗, 100w(1)∗, 100w(2)∗]T such that R(w′,X′) = R(w∗,X) = R∗. This means that
w′ is the optimal solution for the scaled data.

For xj ∈ {x5, ...,xN}, we will have

ŷ = σ(w∗Txj) = σ(w′Tx′
j), (14)

which indicates that the classifiers w∗ and w′ will produce the same result for xj .
(4) If we switch the meaning of the y value, i.e., 0 and 1 now indicating with and without the symptom,

respectively, and train a logistic regression model on the resulting data, will the model produce different
results for {x5, ...,xN} than before switching?

Solution: Although switching the value of y will lead to a model with different parameters, the prediction
of whether the patient has the symptom or not will not change (i.e., correct predictions will remain correct,
and incorrect predictions will remain incorrect).
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